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ABSTRACT : Fault of lamps in tunnel partially reduces road illuminance. Therefore, it
becomes difficult to drive comfortably and safely. Thus, it is important for road admin-
istrators to quantitatively estimate fault probability of lamps and its effect. In this paper,
the final target is to evaluate the risk of the reduction of road illuminance, caused by fault
of lamps. Accordingly, the statistical methodology is constructed to analyze the influence
and range of road illuminance the lamps have. Concretely, the relation between lamps
and road illuminance is formulized as a spatial distribution of illuminance model, which
takes into account of spatial interaction, and Bayesian estimation is proposed to estimate
the unknown parameter and autocorrelation parameter of a spatial distribution of illumi-
nance model. Finally, the validity of the proposed methodology is vertified through an
application study using actual inspection data of a tunnel.
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1. INTRODUCTION

Tunnel lamps maintain illuminance in tunnel
and give visual information such as cognition
of a falling object and visual guidance to im-
prove traveling safety. As present, lamps are in-
stalled based on mean road luminance and lu-
minance evenness. On the other hand, adopting
total revealing power to install lamps is under
consideration1). Total revealing power is calcu-
lated by using a reflectance distribution and crit-
ical reflectance distribution of a variety of fallen
objects considered as the multimodality of prob-
ability distributions. It is necessary to calcu-
late critical reflectance for evaluating road illu-
minance. In this paper, illuminance is defined
as follows: it is plane brightness which a light

source supplies.

Fault of lamps in tunnel partially reduces road
illuminance. Therefore, it becomes difficult to
drive comfortably and safely. Thus, it is impor-
tant for road administrators to quantitatively esti-
mate fault probability of lamps and its effect. To
evaluate the risk of fault of lamps respectively, a
Weibull hazard model was formulated to express
a deterioration process of lamps2). Moreover, the
methodology to evaluate expected deterioration
path and life expectancy was proposed3). On the
other hand, there is the risk of the reduction of
road illuminance caused by fault of lamps. How-
ever, as long as we know, there is no case that
this risk was estimated quantitatively. Therefore,
the statistical methodology is required to evalu-
ate the risk by analyzing the illuminance which
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Fig. 1 Illuminance measurement vehicle

lamps supply to road surface and by expressing
road illuminance precisely. Generally, road il-
luminance is measured by illuminance measure-
ment vehicle. However, measured road illumi-
nance depends on not only a single lamp but also
an entire lamp installed in the tunnel. Therefore,
with measured road illuminance, it is not easy to
identify scalar and the range of road illuminance
supplied by a single lamp installed in the tun-
nel. This relation with spatial interaction is ex-
pressed by spatial autoregressive model. In spa-
tial econometrics, spatial autoregressive model
is introduced4). The model expresses autocor-
relation between explained variables by extend-
ing interrelation of time series in the direction of
space. However, there is no case applied to the
infrastructure.

In this paper, the statistical methodology is
constructed to analyze the influence and range
of road illuminance lamps supply. Concretely,
the relation between lamps and road illuminance
is formulated as a spatial distribution of illumi-
nance model which considers spatial interaction.
Moreover, Bayesian estimation is proposed to
estimate unknown parameters and autocorrela-
tion parameters of a spatial distribution of illu-
minance model. The paper is concluded by illus-
trating the application examples of the proposed
methodology to the data set in the real field.

Fig. 2 Lighting environment in tunnel（case in T=1）

2. MODELING OF DISTRIBUTION OF
ILLUMINANCE

2.1 Assumption of modeling

There are two kinds of tunnel lightings, en-
trance lighting and basic lighting. Entrance light-
ing supplies illuminance in the daytime and it’s
lamps are installed near the entrance to reduce
the difference in the brightness between the in-
side and outside of a tunnel in the daytime. On
the other hand, basic lighting supplies illumi-
nance all the day and it’s lamps are installed in
tunnel at equal intervals. In this paper, premised
the night lighting environment, it is supposed
that only basic lighting in tunnel is turend on.
Road illuminance is measured by illuminance
measurement vehicle at regular intervals. Three
measuring devices are installed in the front of il-
luminance measurement vehicle like Figure–1.
Illuminance measurement vehicle continuously
measures each illuminance such as left, center
and right side of the width of road direction.

The length of a tunnel L is divided by N sec-
tions which unit length is l like Figure–2. The
road illuminance yn in a section n (range of n

is 1, · · · , N from an entrance to an exit) means
horizontal illuminance measured by illuminance
measurement vehicle in section n. However,
three illuminances are measured to one lane by
illuminance measurement vehicle. Thus, one
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lane is divided by three areas. The range of each
area t is 1, · · · , 3T like Figure–2. T is the num-
ber of lanes. We focus on an area t and ana-
lyze horizontal illuminance supplied to section
n by lamps. Moreover, subscript about an area
t is omitted to express simply. Horizontal illu-
minance supplied by lamps is expressed simply:
(1) Horizontal illuminance of a section is sup-
plied by only lamp of the section. (2) Lamp
supplies the illuminance decreased in the ratio
of uniformity to the section the lamp doesn’t
exist. (3) The reduction rate is exponential to
length. Therefore, illuminence of section n (yn)
is defined by neighboring illuminance (yn−1 and
yn+1), existence of lamp of section n and the re-
duction rate of illuminance. Furthermore, illumi-
nance supplied by each lamp in tunnel is equal
and the difference in brightness occurred by de-
terioration and uncleanliness of lamps is not con-
cerned.

2.2 Spatial distribution of illuminance model

Relation between lamps and illuminance is ex-
pressed by a spatial autoregressive model. In this
paper, a spatial distribution of illuminance model
means a spatial autoregressive model. Illumi-
nance of a section changes with the existence of a
lamp, or kinds of lamp. Therefore, characteristic
of section n is expressed as characteristic vec-
tor, xn = (x1

n, · · · , xM
n ) by characteristic vari-

able, xm
n (m = 1, · · · ,M). In this paper, charac-

teristic variables of the model are kinds of lamp
(entrance or emergency parking area) and kinds
of lane (passing or opposite). For example, basic
lighting of passing lane is expressed as m = 1

and lighting of opposite lane in emergency park-
ing area is m = 4. The characteristic variable
concerned by those qualitative parameters is ex-
pressed as follows with dummy variable.

xm
n =


1 existence of

characteristic lamp of m

0 no existence of

characteristic lamp of m

(1)

Furthermore, the reduction rate of illuminance
described in 2.1 is expressed by spatial autocor-
relation parameter ρ. Thus, illuminance yn is ex-
pressed by yn−1 and yn+1.

yn = ρyn−1 + ρyn+1 + xnβ + εn (2)

In this paper, we assume that tunnel lighting
system is symmetrical lighting system. For this
reason, neighboring spatial autocorrelation pa-
rameters are equal. On the other hand, there
are two tunnel lighting systems: pro beam light-
ing system and counter beam lighting system.
Pro beam system makes a leading vehicle easy
to visually recognize and counter beam system
makes it possible to secure the high road lumi-
nance to driver. Both tunnel lighting systems are
asymmetrical lighting system. In the case that
tunnel lighting system is asymmetrical one, it is
necessary to mind that neighboring spatial au-
tocorrelation parameters are not equal. More-
over, β = (β1, · · · , βM)′ are unknown parame-
ters and ′ expresses transposition operation. Fur-
thermore, εn is probability error term and is sub-
ject to the one-dimensional normal distribution
N (0, σ2). Here, formula (2) can be expressed by
a matrix.

Y = ρWY +Xβ + ε (3)

Here, Y = (y1, · · · , yN)′，X = (x′
1, · · · ,x′

N)
′，

ε = (ε1, · · · , εN)′, and element of spatial weight
matrix W, wi,j(i = 1, · · · , N ; j = 1, · · · , N), is
expressed as follows:

wi,j =

 1 i = j ± 1

0 i ̸= j ± 1
(4)

Formula (3) is a typical spatial autoregressive
model and the likelihood is calculated by using
probability error term ε being subject to the one-
dimensional normal distribution N (0, σ2). Un-
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known parameters are expressed θ = (β, ρ, σ).
The likelihood to ε is expressed as follows:

L(θ|ε) =
( 1√

2πσ2

)N
exp

(
− ε′ε

2σ2

)
(5)

Moreover, all data set obtained by illuminance
measurement are expressed as Ω̄ = (Ȳ, X̄) and
formula (3) is expressed as follows:

AȲ − X̄β = ε (6)

A = I− ρW (7)

where I is identity matrix constituted by N

columns and N rows. Changing valuable of for-
mula (5) from ε to Ȳ by using formula (6) and
(5), we can express the likelihood to Ȳ as fol-
lows:

L(θ|Ω̄)

= L(θ|ε)
∣∣∣ ∂ε
∂Ȳ

∣∣∣ = L(θ|ε)|A|

=
( 1√

2πσ2

)N

· exp
{
− (AȲ − X̄β)′(AȲ − X̄β)

2σ2

}
|A|

(8)

3. ESTIMATION OF SPATIAL DISTRIBU-
TION OF ILLUMINANCE MODEL

3.1 Summary of Bayesian estimation

There are some cases that spatial autoregres-
sive model is estimated by maximum likelihood
method. However, in many cases of actual as-
set management, only data of a limited quan-
tity can be acquired. When a spatial autore-
gressive model is estimated by maximum like-
lihood method based on data of a limited quan-
tity, systematic bias occur to estimate because
maximum likelihood estimate is not satisfied
with unbiasedness. In this paper, a spatial dis-
tribution of illuminance model is estimated by
Bayesian method with MCMC (Markov Chain
Monte Marlo) method. Bayesian estimation can
be estimated with comparatively sufficient accu-
racy to utilize prior information, even when there

are few samples. Moreover, Bayesian estimation
is useful for risk management because it is possi-
ble to examine the credible interval of estimate.

In general Bayesian estimation, posterior prob-
ability distribution of parameter is estimated by
using prior probability distribution of parameter
and by using the likelihood based on observa-
tion information. Here, it is assumed that un-
kown parameter vector θ is random variable and
it is subject to prior probability density func-
tion π(θ). When measurement data is obtained,
simultaneous posterior probability density func-
tion of unkown parameter vector θ is expressed
by Bayes’ theorem. Thus, π(θ) is expressed
with prior probability density function π(θ) and
likelihoodL(θ|Ω̄) as follows:

π(θ|Ω̄) ∝ L(θ|Ω̄)π(θ) (9)

3.2 Formulation of posterior probability dis-
tribution

Prior probability density function π(θ) can be
developed.

π(θ) = π(β, ρ, σ) = π(β)π(ρ)π(σ) (10)

Prior probability density function of unknown
parameter vector of formula (10) is set up as
follows. First, π(β), prior probability density
function of β, is multidimensional normal dis-
tribution; β ∼ N (b0,Σb0

). π(ρ), prior proba-
bility density function of ρ, is one dimensional
normal distribution; ρ ∼ N (ρ0, P0). prior
probability density function of probability error
term π(σ) is inverse-gamma distribution; σ ∼
IG(n0/2, S0/2). Lower right subscript 0 ex-
presses a hyperparameter. From the above, si-
multaneous posterior probability density func-
tion can be expressed by formula (8), (9) and
(10).

π(θ|Ω̄)

∝ (σ2)(−
N
2
)

4



· exp
{
− (AȲ − X̄β)′(AȲ − X̄β)

2σ2

}
|A|

· exp
{
− 1

2
(β − b0)′Σ−1

b0
(β − b0)

}
· exp

{
− 1

2P0

(ρ− ρ0)
2
}

·(σ2)(−
n0
2
+1) exp

{
− S0

2σ2

}
(11)

3.3 Estimation of simultaneous posterior
probability density function

To calculate simultaneous posterior probability
density function of spatial autoregressive dis-
tribution model ψ(θ|Ω̄), Gibbs sampling using
conditional posterior probability density func-
tion is applied. Simultaneous posterior probabil-
ity density function is calculated, by classifying
unknown parameter vector θ to each parameter
β, ρ, σ, and nextly, by repeating random sam-
pling based on conditional posterior probability
density function with other parameters as known
values.

Simultaneous posterior probability density
function is calculated by using conditional poste-
rior probability density function of each parame-
ter. ψ(β|ρ, σ, Ω̄), conditional posterior probabil-
ity density function of β with parameter ρ and σ

as known values, can be expressed as

ψ(β|ρ, σ, Ω̄)

∝ exp
{
− 1

2
(β − b1)′Σ−1

1 (β − b1)
}

(12)

b1 = Σ1(Σ
−1
0 b0 + σ−2X̄′AȲ)

Σ−1
1 = Σ−1

0 + σ−2X̄′X̄

In other words, ψ(β|ρ, σ, Ω̄) is multidimen-
sional normal distribution N (b1,Σ1). Further-
more, conditional posterior probability density
function of ρ, with parameter β and σ as known
values, is expressed as

ψ(ρ|β, σ, Ω̄) ∝ |A| · exp
{
− 1

2P0

(ρ− ρ0)
2

−(AȲ − X̄β)′(AȲ − X̄β)

2σ2

}
(13)

Moreover, conditional posterior probability den-
sity function of σ, with parameter β and ρ as
known values, can be expressed as

　ψ(σ|β, ρ, Ω̄)

∝ (σ2)(−
n1
2
+1) · exp

{
− S1

2σ2

}
(14)

n1 = n0 +N

S1 = S0 + (AȲ − X̄β)′(AȲ − X̄β)

In other words, ψ(σ|β, ρ, Ω̄) is inverse-gamma
distribution IG(n1/2, S1/2). simultaneous pos-
terior probability density function of formula
(11) is calculated by those conditional poste-
rior probability density functions. Concrete pre-
sumed steps are shown below and in Figure–3.

step1
Parameters of prior probability distribution
b0,Σb0

, ρ0, P0, n0/2, S0/2 are set up arbi-
trary. Furthermore, θ(0) = (β(0), ρ(0), σ(0)),
initial values of unknown parameters θ =

[β, ρ, σ], are set up arbitrary. The more the
number of samplings increases, the more the
influence of an initial value fades. The ini-
tial value is unrelated to the sampling after
converging on a steady state.

step2-1
β(n), partial vector of unknown parameter of
sampling number n, is sampled at random
from π(β|ρ(n−1), σ(n−1), Ω̄).

step2-2
ρ(n), partial vector of unknown parameter of
sampling number n, is sampled at random
from π(ρ|β(n), σ(n−1), Ω̄).

step2-3
σ(n), partial vector of unknown parameter of
sampling number n, is sampled at random
from π(σ|β(n), ρ(n), Ω̄).

step3
If n > n to sufficiently large n, θ(n) =

(β(n), ρ(n), σ(n)) is recorded.
step4

If n = n, the calculation is ended. If n < n,
then n = n+ 1 so returns to step2.
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Fig. 3 Estimation flow of spatial illuminance distribution model

If this Markov Chain has reached the steady
state, sampling of θ(n = n + 1, n + 2, · · · , n)
by Gibbs sampling is equal to that of π(θ|Ω̄)

showen in formula (9). Accordingly, with these
sample θ(n = n + 1, n + 2, · · · , n) from
Gibbs sampling, it is able to calclate the statis-
tic of simultaneous posterior probability density
function;θ = [β, ρ, σ]. However, there are some
parameters which cannot be sampled at random
directly from conditional posterior probability
density functions.

3.4 Sampling from conditional posterior prob-
ability function

Even if partial vector of unknown parameter can-
not be sampled directly from conditional pos-
terior probability density function, it is possi-
ble to obtain the sample from conditional poste-
rior probability density function by using random
walk MH (Metropolis Hastings) algorithm. Con-

cretely, random walk MH algorithm is applied
to sampling from ψ(ρ|β(n), σ(n−1), Ω̄). MH al-
gorithm is the method that partial vector of un-
known parameter is sampled from proposal dis-
tribution which approximates target distribution
and the difference between proposal distribution
and target distribution is corrected. If those op-
erations are repeated, the sample sampled in the
number of times of a repetition large enough can
be regarded as the sample sampled at random
from target distribution. Here, target distribution
is expressed as ψ(θ̇| ˙̄Ω) and probability density
function of proposal distribution is expressed as
q(θ̇′|θ̇(n−1)). The n-th sampling from proposal
distribution generates θ̇′ following q(θ̇′|θ̇(n−1))

as the candidate parameter from posterior prob-
ability distribution. The candidate θ̇′ is not one
generated from target distribution. Thus, to cur-
rent the difference, the probability that the candi-
date θ̇′ is adopted is defined as follows:

α(θ̇′|θ̇(n−1)) = min

[
ψ(θ̇′| ˙̄Ω)q(θ̇(n−1)|θ̇′)

ψ(θ̇(n−1)| ˙̄Ω)q(θ̇′|θ̇(n−1))

]
(15)

If adopted, θ̇(n) = θ̇′. If rejected, θ̇(n) =

θ̇(n−1). In this paper, it is sampled from
ψ(ρ|β(n), σ(n−1), Ω̄) with random walk MH
method. The n-th candidate is generated by ran-
dom walk such as below.

ρ′ = ρ(n−1) +N (0, P ) (16)

Since probability density q is symmetrical about
(ρ′, ρ(n−1)), the candidate ρ′ is adopted by the
probability such as below.

αρ(ρ
′|ρ(n−1))

= min

[
ψ(ρ′|β(n), σ(n−1), Ω̄)

ψ(ρ(n−1)|β(n), σ(n−1), Ω̄)
, 1

]
(17)

In actual numerical computation, it generated
uniform random numbers u. u is subject to uni-
form distribution between [0, 1]. Nextly, sample

6



are determined according to the following rules:

ρ(n) =

 ρ(n−1) u > αρ

ρ′ u ≤ αρ

(18)

The above is equivalent to Step2-2 of the Gibbs
sampling shown by 3.3.

4. EMPIRICAL STUDY

4.1 Summary of applied case

In this study, the subject tunnel has a road with
double lane and symmetrical lighting system.
The illuminance data is acquired at night in
March, 2011 by illuminance measurement ve-
hicle. Furthermore, the position of lamps and
kinds of lamps are obtained by design drawing.
High pressure natrium lamps are installed in ba-
sic lighting. Fluorescent lamps are installed in
emergency parking area. The length of tunnel is
2,794m and interval of lamps is 12.5m equally.
The tunnel has three emergency parking areas
and the interval of lamps in the area is 2.2m. The
data measured by illuminance measurement ve-
hicle are the average illuminance in every 1m. In
this paper, section l is applied 6.25m and the il-
luminance of each section is applied the average
illuminance in each section. Therefore, the num-
ber of section in each area is 448 sections to one
lane. Moreover, since the number of lane T is 1
and the number of area is 3 in the tunnel, total
number of section in each area is 896. The point
of fault of lamps is inspected regularly. In this
paper, fault of lamps are defined as the failure
lamps discovered by inspection and the replaced
lamps after the latest illuminance measurement.
The point of fault of lamps is defined as where
lamp is not installed. Based on the above data, a
spatial distribution of illuminance model is esti-
mated.

4.2 Estimated results of model

In this paper, characteristic variables of the
model are determined by kinds of lane (passing
lane or opposite lane) and kinds of lighting (basic
lighting or lighting of emergency parking area).
Characteristics m are expressed as



m = 1 passing lane, basic lighting

m = 2 oppsite lane, basic lighting

m = 3 passing lane, lighting of

emergency parking area

m = 4 oppsite lane, lighting of

emergency parking area

(19)

Therefore, θ, unknown parameter vector of area
t, is θ = (β1, β2, β3, β4, ρ, σ).

As an example, estimated result of area 1(t =
1) is shown in Table–1. Table–1 shows Sample
average value (called an ”estimate” simply), 90%
credible interval (θκk, θ

κ

k), Geweke test statistics5),
log likelihood and AIC. The model which min-
imizes AIC is applied as the optimal model in
the model of the combination of various charac-
teristic variables. As a result, in this paper, all
characteristic variables are applied. The estimate
of parameter βm(m = 1, 2, 3, 4) expresses the
value of illuminance which the lamp of m sup-
plies to the section. For example, the estimate
of β1 expresses that the lamp of m = 1 supplies
44.04(lx) if the lamp installed passing lane in ba-
sic lighting turns on. Furthermore, the estimate
of ρ expresses that the lamp supplies the adjoin-
ing section the illuminance decreased at a rate of
0.310. Table–1 shows that the influence of β3 on
the tunnel greater than that of β1. Three factors
are mentioned about this. The 1st factor is the
difference between kinds of lamp. The 2nd factor
is influences of light distribution. Light distribu-
tion curves are difference between basic lighting
and lighting of emergency parking area. Espe-
cially, light distribution in an emergency parking
area is set up to make the lane of left-hand side
mentiond as this exsample (t = 1) the bright-

7



Table 1 Estimated results of spatial illuminance distribution model（ t = 1）

Posterior Passing line Opposite line Passing line Opposite line Spatial Error term
distribution basic lighting basic lighting Emerge area Emerge area autocorrelation standard deviation

statistic β1 β2 β3 β4 ρ σ

Expexted value 44.04 15.27 39.19 6.55 0.310 13.67
90%credible interval (41.0，47.0) (12.3，18.2) (35.1，43.2) (2.53，10.5) (0.30，0.32) (13.1，14.2)
Geweke test statistics 0.041 0.045 0.064 0.052 -0.002 0.004

Log likelihood -3,692
AIC 7,397

Fig. 4 Expected value and measured data of illuminance（ t = 1）

est. The 3rd factor is a difference in the num-
ber of lamps installed in the one section. Since
the installation interval is difference between ba-
sic lighting and lighting of emergency parking,
the lamps in emergency parking is installed more
densely than that of basic lighting. However, in
this study, an explanatory variable is the exis-
tence of lamp to each section. Thus, difference
in the number of lamps was not taken into con-
sideration. The data and expected value of the
model are shown in Figure–4. The target data is
about the up line. The data is drawn by the blue
line and expected value of the model is drawn by
the red line. Moreover, 95% credible interval of
the expected value of the model is drawn by the
peach color dotted line in Figure–4. Thereby,
Figure–4 shows that the overall tendency of the
data is expressed in 95 % credible interval of the
expected value of the model. However, there are
some section which is less than the lower limit
of 95 % credible interval. The factor is a time
lag on an illuminance measurement date and an

inspection date discovered fault of lamps. In this
paper, an illuminance measurement day does not
accord with an inspection day. Thus, the exis-
tence of fault of lamp is not expressed accuracy.
In order to raise estimation accuracy from now
on, it should be considered that an inspection day
of fault of lamps is equal to illuminance mea-
surement day. For this reason, in order to man-
age illuminance in tunnel easily, not only is the
expected value of the illuminance of the whole
tunnel grasped but also the section which is less
than the lower limit of a 95% credible interval is
inspected individually is required. In any case, it
is important to construct a systematic decision-
making process based on quantitative data about
tunnel lighting.

4.3 Estimation of the reduction of illuminance
caused by fault of lamps

Since the influence which lamps has on illumi-
nance is evaluated quantitatively, the spatial illu-
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minance distribution model in this paper makes it
possible to evaluate risk of the reduction of illu-
minance by fault of lamps. The case where fault
of lamps occur in lamp of passing lane is con-
sidered. When illuminance is evaluated between
estimate of 95% credible interval, the illumi-
nance is reduced 41.0 (lx) to 47.0 (lx) at l=6.25m.
Moreover, Figure–4 shows that 95% credible in-
terval of parameter ρ is 0.30 to 0.32. Therefore,
if fault of lamps occur in lamp of passing lane,
the illuminance of adjoining section is reduced
12.3 (lx) to 15.0 (lx). Next, if fault of lamps oc-
cur in the lamps of two continuous sections, the
illuminance is subject to both of influences by
fault of lamp occuring in the section and the ad-
joining section. Thus, the illuminance reduced
53.3 (lx) to 62.0 (lx). From the above results,
it is noted that the spatial illumination distribu-
tion model enabled quantitive evaluation of the
reduction of illuminance. On the other hand, it
is necessary to set up a short section and a pecu-
liar characteristic variable in section in order to
express spatial change of illuminance in tunnel.

4.4 A future subject

It was noted that the risk of the illumination by
the fault of lamps can be evaluated by this model
in 4.(3). However, there is a problem that proba-
bility error term is too large. Table–1 shows that
it has an influence that is equal to other parame-
ters in spite of probability error term. Two things
can be considered as a factor of this. One is not
taking into consideration about the difference in
the brightness for every lamp in this model. It is
necessary to develop the model which takes into
consideration about the influence of a reduction
of illuminance of each lamp by aged deteriora-
tion from now on. The other is a problem of
the size of the interval of the section l. In the
size of the present section, the difference in the
number of the lamp installed in the one section
cannot be taken into consideration. In this pa-

paer, the illuminance of each section is the av-
erage illuminance of section l. Since interval of
the section l is large, there is a possibility of illu-
minance being smoothed and having underesti-
mated the credible interval. From the above rea-
sons, it is necessary to estimate by the shorter
section and it is important to measure illumi-
nance by the shorter section. However, when the
section is shortened, there is some possibility of
that the influence of light distribution becomes
large. It is necessary for modeling to take light
distribution into consideration. It is also impor-
tant to continue recording a repair history besides
at the tunnel lamps installation-time etc.

5. CONCLUSION

This paper attempts to propose methodology to
develop a spatial distribution model and ana-
lyze the influence and range of road illuminance
lamps supply in order to evaluate the risk of the
reduction of road illuminance caused by fault of
lamps. Moreover, this model is applied to the il-
luminance data of an actual tunnel. As a result,
it was found that the reduction of illuminance
by fault of lamps can be evaluated quantitatively.
Furthermore, it pointed out that it was necessary
to mind about a setup of the section.

Future deployment of the proposed methodol-
ogy is as follows. In addtion to the subjects de-
scribed by 4.(4), the following research tasks will
be mentioned. Firstly, it is calculation of total
revealing power using the illuminance distribu-
tion model proposed in this research. In exam-
ination of the present tunnel lighting system, an
important index is critical reflectance of positive
contrast and negative contrast to fallen object.
Since vertical illuminance is necessary to calcu-
late critical reflectance, this illuminance distribu-
tion will be enable to calculate vertical illumi-
nance in consideration of uncertainty, and will
be enable to construct the determination method
of tunnel lighting system. Secondly, this model
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is applied to evaluation of the risk when fault of
lamps occur continuously. It is important to de-
velop evaluation model of the various risk such
as the risk of fault of lamps expressed as Weibull
hazard model and the risk of reduction of illumi-
nance caused by dirt in tunnel.
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