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ABTRACT: Minimizing life cycle cost (LCC) of bridge system while retaining healthy maintenance 

service level is a crucial task for bridge asset managers. Searching for optimized repair scenario for a bridge 

having different characteristics in different environments is a key to accomplish the task. This paper proposes a 

concept to generate all possible maintenance scenarios automatically during predicting degree of deterioration. 

The scenario that gives the lowest LCC with satisfied service level will be considered as an optimized repair 

scenario. The basic timing to repair is decided at the time just before deterioration state will be shifted to more 

severe level. However, there is no proof that repairing action in early point can give a better solution. 

Considering repairing timing at arbitrary time in scenario generation is an issue to discuss in this paper. 

Balance between computing time and effectiveness is also in discussion. 

 

KEYWORDS: Bridge, Life cycle cost, maintenance, scenario 

 

1. INTRODUCTION 

Maintaining a system of bridges to be within a 

specified level by low cost is a critical issue 

especially in developed countries where a number of 

aged bridges are numerous. The solution can be 

sought by implementing a bridge management 

system (BMS) as a tool for decision-making. BMS 

that is designed to adopt mechanistic approach in 

deterioration prediction has advantage on repair 

scenarios consideration. One of the reasons is that 

the repair effects can be straightforwardly modeled 

based on physical phenomena.  

The repair scenario is defined as a pattern of 

what-to-repair and when-to-repair for a whole 

lifespan of the bridge while keeping the bridge in 

satisfied maintenance level. What-to-repair refers to 

a single or a combination of two or more repair 

methods that has different effects (protective, 

corrective, or both) on the deterioration progress. It 

does not limit to only repair method, but also replace 

or rebuilt. When-to-repair is a point in time where 

the repair event occurs. 

Figure 1 shows, for example, three different 

repair scenarios employing different repair methods 

and repair timing. Each of the repair scenarios gives 

a corresponding life cycle cost (LCC) that is 

calculated from summation of all repair events. It is 

one of important indexes to determine effectiveness 

of the scenarios. However, to find the optimized 

scenario that suit the bridge that is under an arbitrary 

deteriorative environment needs many predefined 

scenarios in consideration. A number of possible 

Figure 1: Comparison between different repair 

scenarios that give different life cycle cost 
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2.2 Repairing at arbitrary time 

The repair event at arbitrary time occurred when 

degree of deterioration reaches the maintenance level. 

In addition to the basic scenario to repair at just 

before reaching the maintenance level (filled circle 

in figure 6), the same repairing method to be 

executed at early time is inherited as new scenarios 

(filled stars). The repair events are set in discrete 

divisions in between the point of the last repair to the 

current point that has the period of T*. The period T* 

is divided into n subdivisions that is set by asset 

manager. The inherited scenarios for repairing at 

arbitrary time have the same repair sequence as that 

of the current scenario, but only the repair triggers 

are different, see the scenario list in figure 6. The 

capital T in the trigger represents time trigger in 

contrast to the small t as deterioration condition 

trigger. When the time trigger T is reached in the 

time loop of deterioration prediction, the 

corresponding repair event occurs by applying the 

physical repair effects to the current deterioration 

condition. At this point in each inherited scenarios, 

the same process to generate the scenarios at 

arbitrary time continues until the time loop reaches 

the bridge lifespan, figure 7. This makes a 

combination of repair events, which logarithmically 

increases with value of n. This implies that setting 

larger value of n may give a more precise scenario 

planning, but will cost for calculation time. In 

addition, it is strongly related to the accuracy of the 

deterioration prediction model, which the precise 

scenarios calculated are not applicable when error of 

the prediction model is unavoidable. 

 

3. ANALYSIS EXAMPLES AND DISCUSSION 

This section illustrates the tradeoff analysis 

between LCC optimization, bridge condition, and 

calculation time of a bridge under various 

environmental conditions (airborne chloride flux: 

100, 200, 300, 500, and 800 mg/dm2.yr). A normal 

concrete bridge is assumed with the following 

analysis parameters: cover thickness = 5cm, w/c = 

55%, rebar size = 19 mm, compressive strength = 30 

N/mm2, and Modulus of elasticity = 26,000 N/mm2. 

Figure 6: Scenario generation for the repair 

event at arbitrary time 

Figure 7: Inherited repair scenarios from n=3 

divisions 
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Chloride flux =
n

1 SC
2 SC
3 SC
4 SC
5 SC
6 SC
7 SC
8 SC
9 SC
10 SC

Chloride flux =
n

1 D
2 SC
3 SC
4 SC
5 SC
6 SC
7 SC
8 SC
9 SC
10 SC

Chloride flux =
n

1 D
2 D
3 D
4 SC
5 SC
6 SC
7 SC
8 SC
9 SC
10 SC

Chloride flux =
n

1 SC
2 SC
3 SC
4 SC
5 SC
6 SC
7 SC
8 SC
9 SC
10 SC

Chloride flux =
n

1 D
2 SC
3 SC
4 SC
5 SC
6 SC
7 SC
8 SC
9 SC
10 SC

* CP=Cathodi
SR=Section re

Table 1: Ca
= 100 mg/dm

2
.yr

Be

C(0)→SR(45.5)→
C(0)→SR(45.5)→
C(0)→SR(45.5)→
C(0)→SR(34.1)→
C(0)→SR(36.4)→
C(0)→SR(37.9)→
C(0)→SR(39)→S
C(0)→SR(39.8)→
C(0)→SR(40.4)→
C(0)→SR(41)→S

= 200 mg/dm
2
.yr

Be

N(0)→CP(9.4)→
C(0)→SR(38)→C
C(0)→SR(38)→C
C(0)→SR(38)→C
C(0)→SR(38)→C
C(0)→SR(38)→C
C(0)→SR(38)→C
C(0)→SR(38)→C
C(0)→SR(38)→C
C(0)→SR(38)→C

= 300 mg/dm
2
.yr

Be

N(0)→CP(8.1)→
N(0)→CP(9.7)→
N(0)→CP(12.9)→
C(0)→SR(34.1)→
C(0)→SR(34.1)→
C(0)→SR(34.1)→
C(0)→SR(34.1)→
C(0)→SR(34.1)→
C(0)→SR(34.1)→
C(0)→SR(34.1)→

= 500 mg/dm
2
.yr

Be

C(0)→CP(15.1)→
C(0)→CP(15.1)→
C(0)→CP(15.1)→
C(0)→CP(15.1)→
C(0)→CP(15.1)→
C(0)→CP(15.1)→
C(0)→CP(15.1)→
C(0)→CP(15.1)→
C(0)→CP(15.1)→
C(0)→CP(15.1)→

= 800 mg/dm
2
.yr

Be

N(0)→CP(6)→S
C(0)→CP(12.2)→
C(0)→CP(12.2)→
C(0)→CP(12.2)→
C(0)→CP(12.2)→
C(0)→CP(12.2)→
C(0)→CP(12.2)→
C(0)→CP(12.2)→
C(0)→CP(12.2)→
C(0)→CP(12.2)→

ic protection, SC=
estoration, DN=D

alculated ma

est scenarios
→SR(79)
→SR(79)
→SR(79)
→SR(68.7)
→SR(70.8)
→SR(66.5)
SR(68.3)
→SR(69.6)
→SR(70.7)
SR(71.6)

est scenarios
→CP(59.4)
CP(51.3)
CP(55.7)
CP(58)
CP(59.3)
CP(60.2)
CP(60.8)
CP(61.3)
CP(61.6)
CP(61.9)

est scenarios
→CP(58.1)
→CP(59.7)
→CP(62.9)
→CP(51.6)
→CP(52.7)
→CP(53.5)
→CP(54.1)
→CP(54.5)
→CP(54.8)
→CP(55.1)

est scenarios
→SC+CP(65.1)
→SC+CP(65.1)
→SC+CP(65.1)
→SC+CP(52.6)
→SC+CP(55.1)
→SC+CP(56.8)
→SC+CP(50.8)
→SC+CP(52.6)
→SC+CP(54)
→SC+CP(50.1)

est scenarios

SR+CP(56)
→SC(37.2)→SC+
→SC(28.9)→SC+
→SC(24.7)→SC+
→SC(22.2)→SC+
→SC(28.9)→SC+
→SC(26.5)→SC+
→SC(24.7)→SC+
→SC(28.9)→SC+
→SC(22.2)→SC+

=Surface coating,
Do nothing

aintenance sc

+CP(62.2)
+CP(51.1)
+CP(52.8)
+CP(54.2)
+CP(51.1)
+CP(52)
+CP(52.8)
+CP(51.1)
+CP(50.2)

cenarios



4. CONCLUSIONS 

The proposed algorithm to consider maintenance 

triggers at arbitrary time is able to find a new 

maintenance scheme to reach the lowest LCC. 

However, the calculation time will be sacrificed to 

obtain a little decrement of LCC. A good balance 

between effectiveness of LCC reduction and 

calculation time should be taken case by case. For 

long-term planning where the process is not so 

urgent, increasing n subdivision up to 3 or 4 can be a 

good practice.  

The fine shifting of the repair time can be 

advantage when considering budget constraint, 

where the lower-priority bridge can be shifted to 

other repair opportunity when the budget is 

insufficient. 
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