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ABSTRACT: Nowadays, with the rapid development of information society, decision-making problems 
become more and more complicated especially in large scale systems such as infrastructure, environmental 
and industrial fields, which are usually accompanied by psychological competition between involved parties 
in a complicated, uncertain and dynamic situation. From a holistic perspective of system, a specific 
decision-making method which is described as game-chain-based decision making has been proposed in this 
paper in order to seek a solution for these problems. It takes other involved parties’ thinking into 
consideration and explores consequences of holistic instead of reductionist in order to pursue scientific proof 
and optimal choice for decision makers.  

Based on systematic and game ideas, this paper attempts to find a solution by mathematical modeling. 
First, characteristics and descriptions of this sort of decision-making problems are summarized which can be 
abstracted as game chain. Through giving proper definitions of decision point, state, action, state transition 
probability and immediate utility, a mathematical model is set up which translates the process of game chain 
decision making into Markov decision process with a list of 5 objects. Second, with support of Game Theory 
and Markov Decision Process, the corresponding equilibrium (system equilibrium) in a holistic view of 
system is developed under the principle function of expected total utility and then proved to be existed under 
some certain conditions. Then a pathway to find the system equilibrium is given. Finally the proposed 
method is demonstrated through a tank virtual game. 
 
KEYWORDS: game chain, system equilibrium, Markov decision process  
 
1. INTRODUCTION  
 
Currently, management for large-scale, highly 
interconnected systems such as infrastructure, 
environmental and industrial systems seems to 
become more complicated partly because it is 
usually required to balance the involved parties’ 
requirements and benefits in complex, uncertain and 
dynamic situations from a holistic perspective. Take 
infrastructure for example, which herein refers to the 
technical structures that support a society, such as 
roads, water supply, sewers, telecommunications, 
power grids, and so forth. One typical attribute of 
infrastructure is that the system or network tends to 

evolve over time as it is continuously modified, 
improved, enlarged, and as various components are 
rebuilt, decommissioned or adapted to other uses. It 
usually brings a complex, uncertain and dynamic 
environment for infrastructure management. Another 
attribute is that system components are commonly 
interdependent, not usually capable of subdivision, 
and moreover, the management process is composed 
of several stages or steps involving multiple parties. 
Consequently, management from holistic and game 
perspectives seems quite necessary. As such, an 
organization’s success will largely depend on its 
ability to manage the problems induced by those 
attributes. One important involvement during the 
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management process is decision making, which is 
especially made more difficult by those attributes 
mentioned above, and consequently accompanied by 
psychological competition between involved parties 
in a complicated, uncertain and dynamic situation. 
This paper is an illustration of the application of 
system process modeling and game idea to the 
resolution of complex decision problems. 

 
A holistic illustration is needed to understand the 

overall situation by showing the interconnectivity 
between involved parties, which is the foundation of 
the system processes modeling. The system thinking 
movement (Checkland, 1999; Senge, 2006) is an 
exploration of consequences of holistic instead of 
reductionist ways of thinking. System approaches 
are a way of grasping and managing situations of 
complexity and uncertainty in which there are no 
simple answers and people and their attitudes are an 
integral part of the problem. That is to say, such a 
decision-making method from a holistic perspective 
of system should take involved parties’ thinking into 
account and allow for complexity to be managed. 
Based on above requirements, it seems reasonable to 
combine systematic idea with game idea in order to 
pursue optimal choice for decision makers. 

 
Game theory is considered as a branch of applied 

mathematics which can be used in the social sciences, 
biology, engineering, political science, international 
relations, computer science (mainly for artificial 
intelligence) etc. Game theory attempts to capture 
behavior in strategic situations mathematically, in 
which an individual’s success in making choices 
depends on the choices of others. It plays an 
important role in solving practical decision-making 
problems existed in many fields. Nowadays, “game 
theory is a sort of umbrella or ‘unified field’ theory 
for the rational side of social science, where social is 
interpreted broadly, to include human as well as 

non-human players (computers, animals, plants)” 
(Aumann 1987). Traditional applications of game 
theory attempt to find equilibrium in these games, in 
which each player of the game has adopted a 
strategy that they are unlikely to change. Many 
equilibrium concepts have been developed (most 
famously the Nash equilibrium) in an attempt to 
capture this idea. However, as it is generally focused 
on one game, it seems necessary to add something to 
game theory in order to find a solution for problems 
with a sequence of games which can be depicted as a 
game chain (Figure 1). This paper is just an attempt 
with structure showed in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. CHARACTERISTICS OF GAME CHAIN 

DECISION PROBLEMS 
 
The game chain decision-making problems have 
characteristics as follows: 
(1) It can be abstracted as a chain made up of a 
sequence of game units in which the players take the 
control of decision variables by themselves, 
respectively.   
(2) Some game unit will exert an influence on the 
following game’ condition by taking action, which 
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req
uire
s 
that, 
any 
dec
ision-maker should not only consider the immediate 
reward but also take care of long-term benefit. In 
other words, today’s decision will influence 
tomorrow, and tomorrow’s decision will influence 
future too. If you disregard impact on future and 
only take the interests of current stage into account, 
you do not make a wise decision from the long-term 
perspective. In a word, decision makers are facing a 
decision process which is frequently made up of 
more than one related phases. 
(3) The decision-making problem is displayed with a 
hierarchically discrete structure, thus a system 
strategy for the game chain should be formed from a 
sequence of strategies for each stage.   
(4) The decision-making process is an orderly 
process which means that the players make decisions 
follow the sequence of game units.  
(5) The final system strategy should be acceptable 
for each participant, containing two layers of 
meaning: first, decision-makers seek their own 
“optimal” strategy on the premise of taking others’ 
possible strategies into account; second, they balance 
the immediate reward with possible future reward in 
various circumstances. As a result, all parties are 
unlikely to change or else they will get less benefit. 

 
In conclusion, game chain decision problem is 

firstly a game problem, which means that we should 
take others’ strategies into consideration. Secondly, it 
is a sequential decision-making process usually 
under a complicated, uncertain and dynamic 
environment. As decision makers are frequently 
faced with the complexity of not only taking care of 
immediate reward but also attempting to create 

opportunities for future, it seems a challenge to find 
a solution for this problem. 

 
3. MODELING FOR A CERTAIN KIND OF 

GAME CHAIN 
3.1 Decision process description 
The certain game chain to be analyzed is illustrated 
as               (see Figure 3). 
represent the players of game unit i ( 1, 2, , )i N= L ; Ui 
and Ri ( 1,2, , )i N= L  represent the payoff and 
outcome vectors of game unit i, respectively; Fi is 
the relation function which reflects the influence of 
previous game on the one behind. 
 

The decision-making process based on game 
chain is showed in Figure 4. Our concerning is that 
how to make a proper decision in such a process in a 
holistic view which means taking all stages into 
consideration.  

 
Figure 4 The game-chain decision process 

 

3.2 Elements of the game chain decision process 
(1) Decision-point and stage 

Each decision should be made at a certain 
moment called decision-point in this paper. The 
corresponding set of decision-points in the game 
chain 1 2( , , , )NGC G G G= L  is then denoted as 

{1,2, , }T N= … , while the process between two 
adjacent decision-making points is known as Stage. 

Decision  
point t+1 

Decision
point t State of

Game Unit t 

State of 
Game Unit 

t+１

Action Action

Utility Utility 

( 1, 2)ijG j =1 2( , , , )NGC G G G= L
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(2) State and action  
Condition of the moment when game unit t starts 

is defined as the state of decision-point t and all 
possible states form the set tS . Given t ti S∈ , denote 

( )t tA i  as the action set of game unit t which gives all 
possible action profiles of players in game unit t. 
Notice that under a certain state, a certain action may 
occur or an uncertainty may also be available with a 
number of possible actions to be selected randomly. 
Thus for decision-point t, we define ( ( ))t tDis A i  as 
all probability distributions on ( )t tA i . Then selecting 
action or making decision under the state t ti S∈  at 
the decision-point t is equivalent to selecting a 
probability distribution ( ) ( ( ))t t tDis A iπ ∈�  which 
displays the probability of action ( )t t ta A i∈  as 

( )t taπ , satisfying 

( )
( ) 1

t t t

t t
a A i

aπ
∈

=∑  

If this distribution is degenerated, it means that 
action is selected in determinacy.  
Assumption 1  

t T∀ ∈ , tS  is a finite set.  
Assumption 2  

t T∀ ∈ , t ti S∈ , strategy sets of both players in 
game unit t are all finite sets which guarantees that 

( )t tA i  be a finite set too. 
 

(3) State transition probability and immediate utility 
We notice that the action ( )t t ta A S∈  selected at 

the decision-point t would influence on state of the 
next decision-point t+1. Naturally, we interpret what 
will be brought by taking action ( )t t ta A i∈  under 
the state of t ti S∈  at the decision-point t as follows: 
1) A utility profile at the tth stage in the form 
of 1 2( ) ( )( , ) ( ( , ), ( , ))t tG G

t t t t t t t t tr i a r i a r i a= , which is 
expressed as immediate utility in this paper.  In 
each game unit, either player’s immediate utility is 
dependent on strategies of both players at the 
corresponding stage. Therefore, once the action ta  
is known, we can determine the immediate utility of 

the tth stage.  
 
Note: As a matter of convenience, we suppose 

that immediate utility of each game unit has the 
same dimension (otherwise we can achieve it by 
method of normalization). 
 
2) Influence on state of the next decision-point t+1, 
which is represented by the probability distribution          

described as follows: 
 

If the system takes action ( )t ta A i∈  under the 
state of ti S∈  at the decision-point t, then it will 
transfer to state 1tj S +∈  at the decision-point t+1 
with probability       , satisfying               

1

( ) ( ) 1
t

t
ij t

j S

p a
+∈

=∑               (1) 

Denote                                 as 
the state transition probability distribution family, 
which is generally related to decision-point. The 
state transition probability distribution displays us 
the relation of two adjacent game units, which is 
expressed as the relation function before. For 
example, if the state of game unit t+1 can be only 
proved to be  , then the corresponding transition 
probability is  

 ( ) 1,
( , ) , ( ),

0,
tat

t t t t

j j
p j i a i S a A i t T

others

=⎧⎪= ∈ ∈ ∈⎨
⎪⎩

   (2) 

Thus we have the relation function as 
                                        (3) 

for 1, ( ),t t t ti S a A i j S +∈ ∈ ∈ . In the game chain 
decision problems, the relationship between action at 
decision-point t and state of decision-point t+1 can 
be determined using game theory or obtained from 
experience, thus given the state of decision-point t, 
transition probability to the state of decision-point 
t+1 is independent of previous states or actions, 
which indicates that game-chain-based decision 
process possesses the Markov property. Therefore, a 
mathematical model for game chain based on 

( )
1{ ( , ), , , ( ), }t

t t t t tp p j i a i S j S a A i t T+= ∈ ∈ ∈ ∈

( ) ( )t
ij tp a

taj

( )( , , ) ( )t
t t ij tF i a j p a=

( ) ( , )t
t tp i a�
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Markov decision process is set up with a list of 5 
objects as follows: 

 ( ){ , , ( ), ( , ), ( , )}t
t t t t t t tt

t T t T

T S S A A i p i a r i a
∈ ∈

= = �U U    (4)     

 
(4) Decision policy and strategy 

From the description above, we notice the game 
chain decision process is composed of successive 
states and actions. Label one trace of decision 
process as th , which denotes a series of states and 
actions from decision-point 1 to decision-point t with 
state of the decision-point t as ti : 

        1 1 2 2( , , , , , ),
def

t th i a i a i t T= ∈…        (5) 

in which                          , t ti S∈ . 
The universal set of all that kind of traces is denoted 
as tH , which actually displays all possible decision 
pathways to reach the state of ti  at the 
decision-point t. 
 

A decision policy should give the principle to 
follow when making decisions or selecting actions 
under different states at the decision-points. 
 
Definition 1: If function tf  satisfies: for any t ti S∈ , 
there is      , then tf  is defined as a 
deterministic decision policy or decision function for 
short. The corresponding decision function sequence 

1 2 N( , , , )f f fπ = …  is called a deterministic strategy. 
 
Definition 2: If a family of probability distribution 

tπ  on the state space satisfies: given any pathway 

t th H∈  to approach the decision-point t with the 
state t ti S∈ , ( ) ( ( ))t t t th Dis A iπ ∈�  is a probability 
distribution on ( )t tA i , such that 

            
( )

( ) 0

( ) 1
t t t

t t t

t t t
a A i

a h

a h

π

π
∈

⎧ ≥
⎪
⎨ =
⎪⎩
∑

            (6) 

then tπ  is defined as a generic decision policy. The 
corresponding decision policy sequence 

 1 2 N( , , , )π π π π= …  
is called a generic strategy. The universal set of 
generic strategies is denoted as Π . 
 

Definition 3: If the decision policy tπ  at the 
decision-point t is independent on previous states 
and actions, which means  

                         (7)         
then tπ  is a Markov decision policy and the 
corresponding decision policy sequence 

1 2 N( , , , )π π π π= …  
is called random Markov strategy. The universal set 
of random Markov strategies is denoted as mΠ . If 

( )t t Tπ ∀ ∈  are all degenerate distributions, that is to 
say, there exists a decision function sequence 

1 2 N( , , , )f f f… , satisfying 
                            (8) 

then π  is called a deterministic Markov strategy, 
the universal set of which is denoted as d

mΠ . 
 
(5) Stochastic Process and Principle function 

For t T∈ , tY  and tΔ  denote state and action at 
the decision-point t, respectively. Obviously, they are 
random variables depending on strategyπ . Now we 
have the random sequence 

 
denoted as ( )L π . As it depends on the initial state of 
probability distribution of 1Y , transition probability 
and strategy π , we call it as stochastic process 
induced by strategy π . Accordingly, denote the 
probability of occurrence of an event in ( )L π  as 

( )Pπ � , and corresponding expected utility as ( )Eπ � . 

π∀ ∈Π , define a random variable sequence in the 
stochastic process induced by π  as 

1 2( ) ( ( ), ( ), , ( ))NR R R Rπ π π π= …  
in which the random variable ( ) ( , )( )t t tR r Y t Tπ = Δ ∈  
represents the immediate utility of game unit t at the 
decision-point t.  

 
Now, our purpose is to define a principle 

1 1 2 2( , , , , , , )N NY Y YΔ Δ Δ…( ) ( )t t t tf i A i∈

( ) ( ), ,t t t t t th i h H t Tπ π= ∈ ∈� �

( ( ) ) 1,t t t t t tf i i i Sπ = ∀ ∈

( ), ( ) 1, , 1k k k k ki S a A i k t∈ ∈ = −…
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function to discriminate between good and bad 
strategies, and then try to find an ‘optimal’ strategy 
in the sense of “equilibrium”.  
 
Definition 4 

Finite game chain decision problem is a 
systematic decision process with finite stages in 
some degree. Therefore, we attempt to set up 
expected total utility as a criterion for this game 
chain. Suppose that there is an immediate utility at 
the decision point t as 

1 2( ) ( )( , ) ( ( , ), ( , )), , ( ),t tG G
t t t t t t t t t t t t t tr i a r i a r i a i S a A i t T= ∀ ∈ ∈ ∈

Then define the expected total utility obtained by 
selecting action ( )t t ta A i∈  at the decision-point t 
under the strategyπ  and state t ti S∈  as 

,
1

( , , ) ( , ) { ( , )}, , ( )
N

t N t t t t t n n t t t t t
n t

V i a r i a E r Y i S a A iππ
= +

= ⊕ Δ ∀ ∈ ∈∑   (9)          

where   
 

 

1, ,n t N= + …                             (10)    
in which, nh  should meet the condition that it 
passes ( , )t ti a  at the decision-point t. 
 
Notes: 
1) Actually,      is a vector in the form of 

 
2) The expected total utility of decision-point N is 
 
3)⊕ ,    are different from a summation notation in 
that only utilities of the identical player can be 
added.  
 
4. SOLUTION FOR THE GAME-CHAIN 

DECISION PROBLEM  
4.1 Existence of system equilibrium 
Definition 5: 

At the decision-point t, by employing expected 
total utility as payoff, we establishes a new game 

*( )( ).t tG i t T∈  Then a strategy 

* * * *
1 2( , , , )Nπ π π π= ∈Π…  

is a system equilibrium strategy if satisfying                 
* *( ) arg { ( )}, ,t t t t t ti Eq G i t T i Sπ ∈ ∀ ∈ ∈      (11)          

where arg Eq  means to find Nash Equilibrium of 
the new game *( )t tG i . *( )t tiπ  represents the decision 
or the selected action at the decision-point t under 
the state of t ti S∈ . 

Given a fixed initial state 1 1i S∈ , we can find the 
system equilibrium * * * *

1 2( , , , )NE E E E= … , in which 
* *
1 1 1( )E iπ= , and * *

2 2 2( )E iπ=  by combining 1i , 
* *
1 1 1( )E iπ=  and state transition probability, and then 
* *
3 , , NE E… . 

 
From Assumption 1 and 2, we can see that the 

games at any decision-point are all finite games. As a 
result, they all have Nash Equilibrium, which means 
that t tt T i S∀ ∈ ∈，  
             *arg { ( )}t tEq G i φ≠             (12) 
Then we can approach a conclusion that finite game 
chain decision making process under complete 
information can be defined as a Markov decision 
process, and under the principle of expected total 
utility (9), the system equilibrium exists. 
 
4.2 Solution for system equilibrium 
4.2.1 Theoretical foundation 
For generic strategiesΠ , as all possible pathways 
will be considered, it won’t leave out any strategy 
while it is too difficult to operate when encountering 
with large sets of states and actions brought by 
numerous game units or a large strategy space. 
(1) A large amount of calculation. When the game 
chain is in a large scale, “combinatorial explosion” 
will occur with an exponential growth of possible 
emergence of states, which will lead to inefficiency.  
(2) A large calculation error. As the transition 
probability is dependent on experience on many 
occasions, so there will be errors inevitably. Then in 
the process to find the system strategy in a holistic 
view, with a larger time span, the accumulated error 

1 2( ) ( )
, , ,( , , ) ( ( , , ), ( , , ))t tG G

t N t t t N t t t N t tV i a V i a V i aπ π π=

1 2( ) ( )
, ( , ) ( , ) ( ( , ), ( , ))N NG G

N N N N N N N N N N N N NV i a r i a r i a r i a= =

∑

( , ( ))
{ ( , )} { , } ( , )

n n n n n

n n n n n n n n n n
i S a A i

E r Y P Y i a h r i aπ π
∈ ∈

Δ = = Δ =∑

, ( , , )t N t tV i a π
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will grow larger, and even result in that theoretical 
“optimal” solution is not practical at all. 
 
Theorem 1: For any π ∈Π  and 1i S∈ , there exists 
a random Markov strategy ' mπ ∈Π , satisfying 
                                           

(13) 
Brief proof: Fix the state 1i S∈ , for any 

, ( )t tj S a A j∈ ∈  and t T∈ , define a random Markov 
policy as 

1' ( ) { , }t t ta j P a Y j Y iππ ≡ Δ = = =  
Then we can prove that such strategy ' mπ ∈Π  can 
meet the condition above.                    

 
The meaning of this theorem lies in that 

searching for an optimal strategy from a generic 
strategy set can be equivalent to searching from a 
random Markov strategy set. The conclusion comes 
to existence only under the condition of fixing the 
initial state which indicates that the random Markov 
strategy 'π  is dependent on the initial state 1i S∈ . 
Fortunately, it can be met in game chain decision 
problems described in this paper. Therefore, we 
confine the system equilibrium to the set of random 
Markov strategy, in accordance with which, design 
the corresponding pathway to find the equilibrium.  
 
Theorem 2: Given 1 2 N( , , , ) mπ π π π= ∈Π… , ( )L π  is 
a non-homogeneous Markov chain with transition 
probability of the decision point t is  
  

(14)   
Brief proof:  For t T∈  and t th H∈ ,  expand  

by Total Probability 
Formula. Combining Markov property of π  and 
property of single step transition probability, we can 
get the conclusion.  

 
The significance of the theorem lies in that it 

shows the way to calculate the single step transition 

probability. 
 
4.2.2 Pathway of the solution 

Step1: For t N=  and N Ni S∈ , let 

( , ) ( , ), ( )N N N N N Nu i a r i a a A i= ∀ ∈ . 
Based on the previous assumption, we can see that 

( )N NA i  is a finite set,       . Establish a new game         
with the payoff ( , )N Nu i a  under the state 

N Ni S∈ . Then according to Game Theory, we can 
find decision policy              and the 
corresponding system equilibrium value * ( )N Nu i , 
which are denoted as            and * ( )N NEqG i , 
respectively. Find the equilibrium under all states 

N Ni S∈  and then we can obtain *
Nπ . 

Step2: If 1t = , stop. Then * * *
1( , , )Nπ π π= …  is 

the system equilibrium for this game chain under the 
given initial state. Or else, let 1t t− ⇒ , transfer to 
step3. 

Step3: For every state t ti S∈ , get 
 through 

1

*
1( , ) ( , ) ( , ) ( )

t

t t t t t t t
j S

u i a r i a p j i a u j
+

+
∈

= ⊕ ∑  

Then establish the new game *( )t tG i t ti S∀ ∈  with 
the payoff ( , )t tu i a . Find the decision policy 

*( ), ( )t t t ta i a A iπ ∀ ∈  and corresponding equilibrium 
value * *( ) ( )t t t tEqG i u i=  by employing game theory 
and then obtain *

tπ . 
Step4：Return to Step2. 

 
5. APPLICATION TO DECISION-MAKING 

IN A TANK VIRTUAL GAME 
5.1 Background 
Interdependence of involved parties is usually 
overlooked in decision-making process. However, an 
excellent decision maker should always take his 
opponents’ thinking into consideration just the same 
as what a wise man would do in a competitive or fair 
game. Moreover, on most occasions, decision 
making seems to be carried out by multi-stage 
operation, which indicates that a decision-maker is 

' 1 1{ , } { , },t t t tP Y j a Y i P Y j a Y i t Tπ π= Δ = = = = Δ = = ∀ ∈

1 1 1{ , , } ( , ) ( )t t t t tP Y j b Y i a p j i a b jπ π+ + += Δ = = Δ = =

*arg ( )N NEqG i

1 1{ , , }t t t tP Y j b Y i aπ + += Δ = = Δ =

* ( )N NG i

* ( ), ( )N N N Na i a A iπ ∀ ∈

( , ), ( )t t t tu i a a A i∀ ∈

N Ni S∀ ∈
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frequently faced with a multistep decision process or 
multiple games with his opponents which can be 
described as a game chain. It’s unwise for him to 
make a decision just focusing on his own thinking or 
only partial stages. For example, in a campaign 
virtual game, before fighting the first battle one must 
have a general idea of how the second, third, fourth, 
and even the final battle will be fought, and consider 
what actions his opponent would probably take all 
the time, which means that decision should be made 
from holistic and game perspectives. In this part, we 
make up a scene of tank virtual game to demonstrate 
the pathway to solve game chain problem.  
 
5.2 Game scenarios 
5.2.1 Game stage scenario 
Considering that there are many kinds of decisions to 
make during a tank game, we just take decision of 
force deployment into consideration in this part. 
Before the game starts, a player should make an 
overall deployment of forces on the basis of current 
situation of both sides. We simulate a game simply 
as follows (see Figure 5) in which two players are 
called Red and Blue. They may have different battles 
in different battlefields, which are called as an 
encounter battle, a position battle and a target battle 

successively in this part.  
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2.2 Force deployment assumptions 
(1) At the beginning of the game, Red has 6 platoons 
at the station, which are 18 tanks in all. According to 
present intelligence investigation, there are 4 
platoons at Blue’s station, which are 12 tanks in all.   
(2) Both players can only dispatch troops from their 
station to each battlefield by platoon as a unit. Either   
side is required to have no less than 1 platoon in any 
battlefield. 
(3) In the encounter battle, Red must meet the 
condition that its probability of winning is no less 
than a pre-determined acceptable value θ . 
(Suppose 0.6θ = ) 
(4) Remaining tanks of each battlefield are supposed 
to withdraw and never fight again at the following 
stages. 
(5) Both players are rational indicating that both will 
pursue its maximization of utility on the given 
conditions.   
 
5.3 A Game chain model 
Simulated process of this tank game can be 
abstracted as a game chain (see Figure 6). 

 
Before establishing a mathematical model of this 

game chain, we should first analyze three battles in 
details, respectively, by setting up sub-models which  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Game Stage scenario 

Figure 6 Tank game chain  
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have already been showed in my master thesis. Here, 
only some necessary formulas and results are given. 

 
5.3.1 Sub-models of the virtue game  

(1) Encounter battle 
For Red 

Initial number of tanks: 0 , {3,6,9,12}x m m= ∈  
Winning probability: [0,1]xp ∈  
Number of remaining tanks after tth random 

fighting:  
For Blue 

Initial number of tanks:  
Winning probability:  
Number of remaining tanks after tth random 

fighting:  
 

Table 1 Winning probability and average remaining tanks 

Average remaining 
tanks  

Red 

xp  

Blue 

yp  
Red Blue 

m=3 n=3 0.5000 0.5000 1.1333 1.1333 

m=3 n=6 0.3603 0.6397 0.7724 2.7113 

m=6 n=3 0.6397 0.3603 2.7113 0.7724 

m=6 n=6 0.5000 0.5000 1.9295 1.9295 

m=9 n=3 0.7358 0.2642 4.6583 0.5492 

m=9 n=6 0.6179 0.3821 3.5120 1.3887 

m=12 n=3 0.8026 0.1974 6.8444 0.4024 

m=12 n=6 0.7098 0.2902 5.4134 1.0113 

Utility function[10]: 

Red:  
0

0 0

0

/2
0 ( ) /30( )

1 /
0

( / )
m in 1,

t

t

y y
x y x yA

x x

p p y e
r e

x e
−

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

               

Blue: 
0

0 0

0

/2
0 ( ) /30( )

2 /
0

( / )
m in 1,

t

t

x x
y x y xB

y y

p p x e
r e

y e
−

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

  

Table 2 Payoff matrix of the encounter battle 
    Blue 
Red 

1 2 

1 — — 
2 0.4230, 0.5449 0.5000, 0.5000 
3 0.4004, 0.4855 0.5144, 0.4590 
4 0.3907, 0.4056 0.5358, 0.3845 

Note: The strategies of both sides are expressed by platoon as a 

unit in payoff matrix existing in this part. 

(2) Position battle   
Red is supposed to attack the Blue station.  
For Red:  

The number of platoons which can be used to 
attack: 2 2, {1,2,3}α α ∈  

Attack strength: 1.0 / minλ =  
For Blue: 

The number of defense platoons which can be 
considered as defense lines: 2 2, {1,2}β β ∈  

The average shooting time of each defense line 
for one target: 1 2t min= (the service strength of 
defense line is 11 /u t= ). 

Shooting time t is subject to the negative 
exponential distribution. 

The damage probability of target under the 
condition of being shot: 0.7p =  

The time for a tank to pass through the target 
region is 2min. 
 
If 2 2β = , denote the shooting probability of ith 
defense lines as   . Then 

         

1 0

2 0 1

3 2

2 ( )
2

up p
up p u p
up p

λ
λ λ
λ

=⎧
⎪ + = +⎨
⎪ =⎩                     

Combining with 
2

0

1i
i

p
=

=∑ , we can find the solution 

as 0 1 2
1 2 2, ,
5 5 5

p p p= = = .  

And for 2 1β = , there is 0 1
1 2,
3 3

p p= = . 

Table 3 Penetration of Red in the position battle 

Note: N denotes the number of tanks of Red.   

       related 
   parameters 

 
strategy profile 
Blue defense lines 

penetration 
probability 

for Red 

cp  

expectation of 
penetration 

tanks for Red 
[1 (1 ) ]cN p p− −� �

(3,1) 1 2/3 6.9000 
(2,2) 2 2/5 3.4800 
(2,1) 1 2/3 4.6000 
(3,2) 2 2/5 5.2200 
(1,1) 1 2/3 2.3000 
(1,2) 2 2/5 1.7400 

,tx t N+∈

0 , {3,6}y n n= ∈

[0,1]yp ∈

,ty t N+∈

ip
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Utility functions: 
Red:   

2 2( )
2

[1 (1 ) ] [1 (1 ) ]3 3min{ ,1} min{ ,1}c cA N p p p p
N N

r
N

β β− − − −
= =

� � � � �

�

Blue:  

2 2

( )
2

(1 ) (1 )min{ ,1} min{ ,1}
3 3

c cB N p p N N p pr
N β β
− −

= =
�

�
 

Table 4 Payoff matrix of the position battle 
   Blue 

Red 1 2 

1 0.2556, 0.7000 1.0000, 0.2100 
2 0.3833, 0.4667 0.5800, 0.4200 
3 0.7667, 0.2333 0.3867, 0.6300 

 
(3) Target battle                                
Utility Functions 

Red:  ( )
3

   
m in { ,1}

  
A R e d fo rc e n u m b e r

r
B lu e fo rc e n u m b e r

=                             

Blue:  ( )
3

   
m in { ,1}

  
B B lu e fo rc e n u m b e r

r
R e d fo rc e n u m b e r

=    

      Table 5 Payoff matrix of the target battle     
  Blue 

Red 1 2         

1 1.0000, 1.0000 0.5000, 1.0000 
2 1.0000, 0.5000 1.0000, 1.0000 
3 1.0000, 0.3333 1.0000, 0.6667 

 
5.3.2 The game chain model 

On a basis of previous sub-models, a game chain 
model is established based on Markov Decision 
Process with decision point set as {1,2,3}T = . 
 
(1) State and action 

In this problem, state is defined as the platoons 
which can be assigned at the decision point t (t=1, 2, 
3), while action represents the platoons dispatched to 
the corresponding battlefield which is related to state 
of the corresponding decision point. Then 

1 {(6, 4)}S =  
  

1 2 6 1{ , , , }, (6,4)a a a i S= = ∈…    

2 {(4,3), (4,2), (3,3), (3,2), (2,3), (2,2)}S =  

1 2 6{ , , , }j j j= …  

2 1( ) {(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)}A j =  

2 2( ) {(1,1), (2,1), (3,1)}A j =  

2 3 2 2( ) ( ) {(1,1), (1,2), (2,1), (2,2)}A j A j= =  

2 4( ) {(1,1), (2,1)}A j =  

2 5( ) {(1,1), (1,2)}A j =  

2 6( ) {(1,1)}A j = ; 

2 2

3
, ( )

( )
j S b A j

S j b
∈ ∈

= −U  

{(3, 2), (3,1), (2, 2), (2,1), (1, 2), (1,1)}=  

3 3( ) { },A k k k S= ∈ 。 
 
(2) State transition probability and immediate utility 

The state of decision point t+1 is decided by the 
state of decision point t and corresponding action 
which is selected. For example, if decision-maker 
selects action 1 (2,1)a = , then state of decision point 2 

will be transferred to (6, 4) (2,1) (4,3)− = . Hence, 

the state transition probability of decision point 1 is 

   (1)
1 1

1,
( , ) , ( )

0,other
j i a

p j i a i S a A i
= −⎧

= ∀ ∈ ∈⎨
⎩

      

The state transition probability of decision point 2 is  

(2)
2 2

1,
( , ) , ( )

0,other
k j b

p k j b j S b A j
= −⎧

= ∀ ∈ ∈⎨
⎩

 

The immediate utilities are in the form of 
 
  
   
Then we try to find system equilibrium of this game 
chain model. 
 
5.4 Solution  

Step1: For 3t = , expected total utility of each 
action is:  

 
Label the new game under any state 1i S∈  as *

3 ( )G i . 
According to previous analysis, the equilibrium of 
new game      is                       

                          
Thus the decision function is *

3 ( )f i i=  and the 

1( ) {(2,1), (2, 2), (3,1), (3, 2), (4,1), (4, 2)}A i =

( ) ( )
1 1 1 1 1( , ) ( ( , ), ( , )), , ( )A Br i a r i a r i a i S a A i= ∈ ∈

( ) ( )
2 2 2 2 2( , ) ( ( , ), ( , )), , ( )A Br j b r j b r j b j S b A j= ∈ ∈

( ) ( )
3 1 1 3( , ) ( ( ), ( )),A Br k k r k r k k S= ∈

*
3 ( )G i

( ) ( )
3 3 3 3 3 3( , ) ( , ) ( ( , ), ( , )), , ( )A Bu i a r i a r i a r i a i S a A i= = ∈ ∈

*
3 1arg { ( )} ,Eq G i i i S= ∀ ∈
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corresponding equilibrium value function is 
*
3 3( ) ( , )u i r i i=  (see Table 5). 

 
Step2: For 2t = ,  

*
2 2 3( , ) ( , ) ( )u i a r i a u i a= + −   

( ) ( )
2 2 2 2( ( , ), ( , )), , ( )A Bu i a u i a i S a A i= ∈ ∈        

Label the new game in any state 2i S∈  as     , 
and the corresponding results are listed as follows: 
 
(1) For (4,3)i =  

2 ( ) {(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}a A i∈ =  and the 
corresponding pay-off matrix under the state 

(4,3)i =  is showed in Table 6. 
Table 6 Pay-off Matrix under the state of (4,3)i =  

   Blue 
Red 1 2 

1 1.2556, 1.3667 2.0000, 0.5433 
2 1.3833, 1.4667 1.5800, 0.9200 
3 1.2667, 1.2333 1.3867, 1.6300 

Then *
3 ( ) (2,1)f i = , *

3 ( ) (1.3833,1.4667)u i = . 
 
(2) For (4, 2)i = , 2 ( ) {(1,1),(2,1),(3,1)}a A i∈ =  and the 
corresponding pay-off matrix is showed in Table 7. 

Table 7 Pay-off Matrix under the state of  
     Blue 

Red 1 

1 1.2556, 1.0333 
2 1.3833, 0.9667 
3 1.7667, 1.2333 

Then           ,                    . 
 
(3) For        ,  
and the corresponding pay-off matrix is showed in 
Table 8. 

Table 8 Pay-off Matrix under the state of  
   Blue 

Red 1 2 

1 1.2556, 1.7000 2.0000, 0.7100 
2 0.8833, 1.4667 1.5800, 1.4200 

Then          ,                    . 
 
(4) For        ,                     and the  
corresponding pay-off matrix is showed in Table 9. 

Table 9 Pay-off Matrix under the state of (3,2)i =  
    Blue

Red 1 

1 1.2556, 1.2000 
2 1.3833, 1.4667 

Then           ,                   . 
 
(5) For        ,                     and the  
corresponding pay-off matrix is showed in Table 10. 

Table 10 Pay-off Matrix under the state of (2,3)i =  
    Blue

Red 1 

1 0.7556, 1.7000 
2 1.3833, 1.4667 

Then           ,                    . 
 
(6) For        ,                .  
Corresponding pay-off matrix is showed in Table 11. 

Table 11 Pay-off Matrix under the state of  
    Blue

Red 1 

1 1.2556, 1.7000 

Then           ,                    . 
 
The decision function and corresponding value 

function are as follows:  
 
 
 
 
 
    
 
 
 
 
 
 

 
Step3: For      , the expected total utility is 

                                     , such  
that 1 1, ( )i S a A i∈ ∈ .  As       and corresponding 

*
2 ( )G i

(4, 2)i =

*
3 ( ) (3,1)f i = *

3 ( ) (1.7667,1.2333)u i =

(3,3)i = 2 ( ) {(1,1), (1,2), (2,1), (2,2)}a A i∈ =

(3,3)i =

*
3 ( ) (1,1)f i = *

3 ( ) (1.2556,1.7000)u i =

(3, 2)i = 2 ( ) {(1,1), (2,1)}a A i∈ =

*
3 ( ) (2,1)f i = *

3 ( ) (1.3833,1.4667)u i =

(2,3)i = 2 ( ) {(1,1), (1,2)}a A i∈ =

*
3 ( ) (2,1)f i = *

3 ( ) (1.3833,1.4667)u i =

(2, 2)i = 2 ( ) {(1,1)}a A i∈ =

(2, 2)i =

*
3 ( ) (1,1)f i = *

3 ( ) (1.2556,1.7000)u i =

* ( ) ( )
1 1 2 1 1( , ) ( , ) ( ) ( ( , ), ( , ))A Bu i a r i a u i a u i a u i a= + − =

1t =

(6, 4)i =

*
2

(2,1), (4,3)
(3,1), (4,2)
(1,1), (3,3)

( )
(2,1), (3,2)
(2,1), (2,3)
(1,1), (2, 2)

i
i
i

f i
i
i
i

=⎧
⎪ =⎪
⎪ =

= ⎨ =⎪
⎪ =
⎪

=⎩

*
2

(1.3833,1.4667), (4,3)
(1.7667,1.2333), (4, 2)
(1.2556,1.7000), (3,3)

( )
(1.3833,1.4667), (3, 2)
(1.3833,1.4667), (2,3)
(1.2556,1.7000), (2, 2)

i
i
i

u i
i
i
i

=⎧
⎪ =⎪
⎪ =

= ⎨ =⎪
⎪ =
⎪

=⎩
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, we find 
the solution         of new game      under the 
principle of expected total utility which is showed in 
Table 12.  
Then              ,                      .  

 
Table 12 Pay-off Matrix of encounter battle 

under the state of     
Blue 

Red 1 2 

2 1.8132, 2.01161 2.2667, 1.7333 
3 1.65596, 2.18551 1.89768, 1.92568 
4 1.77398, 1.87225 1.79316, 2.08447 

 
Above all, we find the system equilibrium of this 

game chain as                 , which could 
provide proposal for decision-maker from holistic 
and game perspectives. The meaning of decision 
function also lies in that in actual decision-making 
process, it can provide the system equilibrium of the 
rest stages of the affair after combining with the 
feedback of environmental information.   
 
6. CONCLUSION 
 
Demonstrated by a virtue game, it seems feasible to 
find a solution for game chain decision problem 
through the pathway proposed in this paper. The 
result is more acceptable and reasonable from 
systematic and holistic perspectives. The most 
important purpose of this paper is that we want to 
draw more attention to adding systematic idea and 
game idea into complex decision making process in 
such fields as infrastructure management etc. in 
order to pursue a more reasonable scheme before 
taking action for decision makers. 
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1( ) {(2,1), (2, 2), (3,1), (3, 2), (4,1), (4, 2)}A i =
*
1{ ( )}Eq G i *

1 ( )G i

*
1 ((6, 4)) (2,1)f = *

1 ((6, 4)) (1.8132, 2.01161)u =

(6, 4)i =

* ((2,1), (2, 2), (2,1))E =


